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0.1 Introduction

Let L = Z + Zτ be a lattice in C and consider the Siegel function

g(z, τ) = e
−1
2
zη(z)σ(z)∆(τ)

1
12 , z ∈ C, τ ∈ H∗

where η(z) is the quasi-period map, σ is the Weirstrass sigma function, and ∆
1
12 (τ) is

the square of the Dedekind-eta function. Explicitly, it is given by a product expansion

ga(τ) = −q(1/2)B2(a1)
τ e2πia2(a1−1)/2(1− qz)

∞∏
n=1

(1− qnτ qz)(1− qnτ /qz)

where qτ = e2πiτ and qz = e2πiz, z = a1 + a2τ , a1, a2 ∈ C, B2(X) = X2 − X + 1
6

is the
second Bernoulli polynomial.

If we let
φ(z) = − log |g(z, τ)|

then φ(z) : C/(Z + Zτ) \ {0} → R does not depend on the choice of τ . It is a function
on the torus, ”transcendental”, and smooth everywhere except at 0. The function φ has
several properties:

• Distribution relation. For any n ≥ 2 and z 6= 0,∑
w∈C/(Z+Zτ),nw=z

φ(w) = φ(z)

• Kronecker second limit formula. Consider the Eisenstein series

Eu,v(τ, s) =
∑

(m,n)6=(0,0)

e2πi(mu+nv) ys

|mτ + n|2s

where τ = x + iy is in the upper half plane and u, v are not both integer. This
series converges absolutely for Re(s) > 1, and can be continued analytically to an
entire function of s. Its value at s = 1 is given by

Eu,v(τ, 1) = −2π log |g−v,u(τ)|

where gu,v(τ) is the Siegel function.

• Giving rise to elliptic units. Let K be an imaginary quadratic field and OK its
ring of integers. Let f = (N) ⊆ OK be a nontrivial ideal and Cl(f) = I(f)/PK,1(f)
be its ray class group. By class field theory, there exists a unique abelian extension
Kf of K, called the ray class field modulo a conductor f, with

σ : Cl(f) ∼= Gal(Kf/K)
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where σ is the Artin reciprocity map. For any C ∈ Cl(f), take c ∈ C a representa-
tive integral ideal. Then fc−1 ⊆ K is a lattice in C. The Siegel-Ramachandra
invariant is defined as

gf(C) = g12N(1, fc−1)

Siegel and Ramachandra proved that the value gf(C) depends only on the class
C ∈ Cl(f) and is contained in Kf. Moreover, if N has at least two prime factors,
then gf(C) ∈ O∗Kf

. Thus one can construct units in the ray class fields of imagi-
nary quadratic fields using N - torsion points of certain elliptic curves using Siegel
functions. In particular, on those elliptic curves,

the term e12Nφ(z) is an algebraic unit.

Naturally, one asks for an analogue of the function φ in higher dimensions, and hopes
to construct algebraic units from its values at certain torsion points of abelian varieties.
An interpretation to these questions is given in the article On a canonical class of Green
currents for the unit sections of abelian schemes by Vincent Maillot and Damian Rössler.
In particular, they consider an abelian scheme A of relative dimension g over S. Using
Arakelov theory, they are able to construct a canonical class of real currents gA of type
(g−1, g−1) on the complex dual abelian scheme A∨(C). When g = 1 and S = Spec(OK),
this class of currents restricts to functions φσ on the torus Eσ(C) for each embedding
σ : K → C, and is equal to 2 × the (Siegel) function φ(z). Moreover, they showed that
the class of currents gA satisfies several properties:

• For any n ≥ 2, [n]∗gA = gA. This property is a generalization of the distribution
relation of the function φ that we have seen.

• When restricted to the complement of the zero section, the class of currents gA
can be given by the (g− 1) part of the Bismut-Köhler analytic torsion form of the
Poincaré bundle along the fibration A(C)×S(C) (A∨(C)\S∨0 (C))→ A∨(C)\S∨0 (C),
where S∨0 is the image of the zero section of A∨/S. When g = 1, the function φσ is
given by the Ray-Singer analytic torsions of flat line bundles on the torus Eσ(C).
By an explicit calculation of Ray and Singer [21], this function is exactly 1

π
× the

Eisenstein series in the Kronecker’s second limit formula.

• After multiplying with some integer number, the pull-back of the Bismut-Köhler
analytic torsion form of the Poincaré bundle along a non-trivial torsion section
is contained in the image of the Beilinson regulator map from Quillen’s algebraic
K1 group of S. When S = Spec(OK), K1(Spec(OK)) = O∗K , and the Beilinson
regulator map becomes the Dirichlet’s regulator map, given by logarithm functions.
This gives a link to the construction of algebraic units using Siegel functions. In
particular, the property implies that when g = 1 the number e24φσ(z) is an algebraic
unit.
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In this mémoire, I will give a quick presentation of higher dimensional Arakelov geometry
developed in [13, 14, 15, 25, 5, 4, 12, 22] and a generalization of the Siegel function
given by Vincent Maillot and Damian Rössler. We begin with an introduction to Gillet
and Soulé’s arithmetic intersection theory and their theory of characteristic classes for
hermitian vector bundles with values in arithmetic Chow groups. Next, we recall the
arithmetic Riemann Roch theorem, and its variant for the Adams operations developed
by Gillet, Bismut, Soulé and Rössler. They will form the first chapter of this mémoire.

Chapter two is an application of Arakelov theory to abelian schemes, following closely
V. Maillot and D. Rössler’s paper. We show that there exists a unique class (up to ∂
and ∂) of currents on the complex points of dual abelian schemes, characterized by three
axioms. This class of currents plays the role of the higher Siegel function. In addition,
we prove an analogue in Arakelov geometry of a Chern class formula of Bloch and
Beauville, in which this class of currents appears. Next, we use the arithmetic Riemann-
Roch theorem to show that when restricted to the complement of the zero section, this
class of currents can be given by the (g − 1) part of the Bismut-Köhler analytic torsion
form of the Poincaré bundle along the complement of the zero section. This gives a
generalization in higher dimensions of the Kronecker second limit formula. Finally, we
apply the Adams-Riemann-Roch theorem to show that when pulling back by a torsion
section, the Bismut-Köhler analytic torsion form has a realization in Quillen’s algebraic
K1 group of the base. This is a generalization of the property of giving rise to elliptic
units. We end the mémoire with an interpretation in the case of dimension one. For
further properties of this class of currents, we refer to the original article.

0.2 Acknowledgement

I thank my advisor Vincent Maillot for suggesting me the topics, and accepting me to
be his student. He gave me many good explanations on the content of this mémoire. I
thank my parents and friends who always love and support me. I thank the ALGANT
program for giving me a chance to study in Europe, and professors in Padova and Orsay
for their kindness, and inspiration. I thank professor Edward Schwartz in my undergrad-
uate school for always helping me, and my piano and Alexander technique teachers for
interesting aspects of life.
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Chapter 1

A quick tour of Arakelov theory in

higher dimensions

In [13], Gillet and Soulé developed an arithmetic intersection theory for arithmetic va-
rieties, generalizing in higher dimensions the works of Arakelov, Faltings, Szpiro and
Deligne [1, 9, 10, 8] for arithmetic surfaces. They consider arithmetic varieties X, which
are regular schemes, quasi-projective and flat over arithmetic rings R (for exampleR = Z,
or R = OK), together with complex manifolds X(C) =

∐
Xσ(C) for σ ∈

∑
, a finite,

linear conjugation-invariant set of embeddings of R into C. An arithmetic cycle is defined
to be a pair (Z, g) where Z is an algebraic cycle, and g is a real, conjugation-invariant
current on X(C) satisfying the equation

ddcg + δZ(C) = [w],

for w a smooth form. The equivalent classes of arithmetic cycles form the arithmetic
Chow groups, which have a product structure and functoriality properties. This parallels
the development in the algebraic side of classical Chow groups of varieties over fields
although the arithmetic theory is more complicated due to the analysis involved and the
intersection theory is done on schemes over R.

In their following works [14, 15], Gillet and Soulé developped an arithmetic theory of
characteristic classes for Hermitian vector bundles, which are pairs (E, h) of an algebraic
vector bundle E and a smooth conjugation-invariant hermitian metric h on the holo-
morphic bundle EC, with values in the arithmetic Chow rings. To each arithmetic cycle
(Z, g), there are forgetful maps to Z in classical Chow groups, and to w = ddcg+δZ(C), a
form in cohomology class, which is the Poincaré dual of Z. Under those forgetful maps,
their arithmetic characteristic classes for hermitian vector bundles become those with
values in classical Chow groups, and of Chern-Weil theory with values are closed forms.
In general, their arithmetic characters are not additive for exact sequences of hermitian
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vector bundles. The difference is given by secondary Bott-Chern classes [3, 7] which
refine Chern-Weil theory at the level of forms.

We recall in the classical situation, if g : X → Y is a morphism of non-singular
varieties, then the Chern character commutes with the pull-back g∗ of vector bundles.
If g is proper, we can define the direct image map g∗ of a vector bundle, framing in the
language of Grothendieck groups. However, the Chern character does not commute with
g∗ and it is described by the Grothendieck-Riemann-Roch theorem. The theorem says
that the diagram

K0(X) CH•(X)Q

K0(Y ) CH•(Y )Q

Td(Tg).ch

g∗ g∗

ch

is commutative: ch(g∗F ) = f∗(ch(F )Td(Tg)), where Tg = TX − g∗TY is the virtual
relative tangent bundle, and F is a vector bundle. In [16], Gillet and Soulé proved an
analogue of the Grothendieck-Riemann-Roch theorem for arithmetic varieties. Let F
be a vector bundle on X, and λ(F ) = detRg∗(F ) be the (algebraic) determinant of
cohomology line bundle. Its holomorphic bundle λ(F )C can be endowed with a smooth
hermitian metric h, called Quillen metric [3]. The arithmetic Riemann-Roch theorem of
Gillet, Soulé and Bismut gives a comparison between ĉ1(detRg∗(F, h)) and component

(1) of g∗(ĉh(F, h)). In [12], using the higher analytic torsion forms of Bismut-Köhler [3]
to define the push-forward of arithmetic K-groups, Gillet, Rössler, and Soulé proved a
more general arithmetic Riemann-Roch theorem, stating that the diagram

K̂0(X) ĈH
•
(X)Q

K̂0(Y ) ĈH
•
(Y )Q

T̂ d(Tg).(1−R(TgC)).ĉh

g∗ g∗

ĉh

is commutative, where objects with ̂ are arithmetic generalization, including also differ-
ential information as we have seen for the arithmetic Chow groups. The arithmetic push-

forward maps g∗ : ĈH
•
(Y )Q → ĈH

•
(B)Q and g∗ : K̂0(Y ) → K̂0(B) involve analysis on

the analytic side, integral of currents along the fibres in the first case, and Bismut-Köhler
analytic torsion forms in the second case. The exotic cohomology class R(TgC) is added
to make the diagram commutes. This diagram fits in a three-dimensional commutative
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diagram:

K0(Y ) CH(Y )Q

K̂0(Y ) ĈH(Y )Q

K0(B) CH(B)Q

K̂0(B) ĈH(B)Q

Td(Tg).ch

g∗

g∗

T̂ d(Tg)(1−R(TgC)).ĉh

g∗

g∗
ch

ĉh

where various forgetful arrows � are surjective and the diagram behind is the Grothendieck-
Riemann-Roch theorem. We will recall the general arithmetic Riemann-Roch theorem,
and finish this chapter by mentioning an arithmetic version of Riemann-Roch theorem for
Adams operations [22]. Similar to the arithmetic Riemann-Roch theorem, it measures
the commutativity of the Adams operations and the push-forward map of arithmetic
K-groups.

1.1 Arithmetic intersection theory

The main references for this section are [6, 13, 25, 24].

1.1.1 Currents on complex manifolds

Let X be a smooth quasi-projective complex manifold. Let Dp,q(X) and Ap,q(X) be
spaces of currents and smooth differential forms of type (p, q). By definition, when X is
of dimension d, a current of type (p, q) is a linear map

S : Ad−p,d−qc (X)→ C

which is continuous for the Schwartz topology.

Example 1.1. Let Y ⊆ X be an analytic cycle of co-dimension p. We can define a current

of integration associated to Y in Dp,p(X), denoted by δY , by integration on the smooth

part of Y :

δY (w) =

∫
Y \Y sing

w.
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By Hinoranka’s works on the resolution of singularities, we can find a proper morphism

π : Ỹ → Y which is an isomorphism on an open dense subset, and Ỹ is a projective

manifold. Then δY is equal to an integral on the compact manifold Ỹ :

δY (w) =

∫
Ỹ

π∗(w)

hence converges.

Example 1.2. There is an inclusion Ap,q(X) ⊆ Dp,q(X), where we consider a form w ∈
Ap,q(X) as a current in Dp,q(X) by sending η ∈ Ad−p,d−qc (X) to

∫
X
w∧ η. We denote this

current by [w].

Example 1.3. More generally, let U ⊆ X be a dense open set, and w a smooth form on

U such that w extends to an L1- form on X. Then it defines a current [w] ∈ Dp,p(X) by

the formula

[w](η) =

∫
U

w ∧ η

1.1.2 Green currents associated to analytic cycles

Similar to forms, we can define the ∂ and ∂ operators on currents. Let S ∈ Dp,q(X),

then its derivatives ∂S ∈ Dp+1,q(X) and ∂S ∈ Dp,q+1(X) are defined by

∂S(η) = (−1)p+q+1S(∂η)

and

∂S(η) = (−1)p+q+1S(∂η)

Denote d = ∂ + ∂ and dc = (∂ − ∂)/(4πi), so ddc = ∂∂
2πi

.

Definition 1. Let Z be a cycle of codimension p on X. A Green current for Z is a

current g ∈ Dp−1,p−1(X) such that:

ddcg + δZ = [w]

for some smooth form w ∈ Ap,p(X) ⊆ Dp,p(X).
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Theorem 1.4. Let X be a compact Kähler manifold, and Z a cycle of codimension p.

1) There always exists a Green current gZ for Z. Moreover, gZ can be taken to be real.

2) If g1, g2 are two Green currents for Z, then

g1 − g2 = [η] + ∂S1 + ∂S2

with η ∈ Ap−1,p−1(X), S1 ∈ Dp−2,p−1(X), S2 ∈ Dp−1,p−2(X).

3) The current gZ can be chosen to be of logarithmic type along Z. It means that gZ is

of the form [gY ] for gY a smooth form on Y = X \Z, such that gY can be extended to an

integrable form on X and grows slowly (logarithmic) along Z. In this case, gY is called

a Green form for the cycle Z.

Example 1.5. In the case p = 1, there exists a holomorphic line bundle L, and a section s

of L on some dense open set of X such that Z = div(s). Choose a C∞ Hermitian metric

on L. Then the Poincaré - Lelong formula gives

ddc[− log ||s||2] + δZ = c1(L, ||.||)

where [− log ||s||2] ∈ D0,0(X) is the current associated to the real-valued L1 function

− log ||s||2 and c1(L, ||.||) is the first Chern class of L. By the definition, [− log ||s||2] is

a Green current for Z = div(s). One can show that all Green currents associated to

codimension-1 cycles are obtained in this way. They are also examples of Green forms

of logarithmic type.

Remark 1.6. The notion of Green forms of logarithmic type is important when we define

the pull-back and product of currents. In particular, given two cycles Y and Z meeting

properly, and gY and gZ their corresponding currents, we would like to have a Green

current for the intersection of Y and Z. Heuristically, we can define gY ∗ gZ = gY ∧ δZ +

wY ∧gZ and show that ddc(gY ∗gZ) = −δY ∩Z +wY ∧wZ . However, we need to justify the

definition of gY ∧ δZ and we can do that when the current gY is given by a Green form

of logarithmic type. The pull-back of currents compatible with cycles is defined through

the pull-back of Green forms.

1.1.3 Arithmetic rings

We will study varieties over arithmetic rings, which are generalizations of the ring of
integers.
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Definition 2. An arithmetic ring is a triple (A,
∑
, F∞) consisting of an excellent regular

Noetherian integral domain A, and a finite non-empty set
∑

of embeddings σ : A ↪→ C,

and a conjugate-linear involution of C-algebras, F∞ : C
∑
→ C

∑
, such that the diagram

A C
∑

A C
∑

δ

|| F∞

δ

is commutative. Here δ = (σ : A→ C)σ∈∑.

Example 1.7. Let A = OK be the ring of integers, and
∑

be the set of all embeddings

of K into C. We have a commutative diagram:

C⊗Z A C
∑

C⊗Z A C
∑

δ′

c⊗ Id F∞

δ′

where c(z) = z and δ′ = {Id ⊗ σ}σ∈∑. We remark that [OK : Z] = [K : Q] =

# of field embeddings of K → C, and δ′ is an isomorphism. We can take F∞ to be the

involution induced by c⊗ Id.

Example 1.8. Let A = C. We have a commutative diagram

C⊗R A C× C

C⊗Z A C× C

δ′

c⊗ Id F∞

δ′

where δ′ : z ⊗ w → (zw, zw) is an isomorphism. The embedding of A→ C× C is given

by the composition A → C ⊗R A → C × C : a → 1 ⊗ a → (a, a). We can take
∑

to

be {Id, c} where c is the complex conjugation, and F∞ is the involution induced from

c⊗ Id. The map F∞ sends (zw, zw) −→ (zw, zw), and in particular, F∞(a, b) = (b, a).
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1.1.4 Arithmetic Chow groups and arithmetic cycles

Let (A,
∑
, F∞) be an arithmetic ring, and F its fraction field.

Definition 3. An arithmetic variety X is a regular scheme, quasi-projective and flat

over A, with smooth generic fibre XF .

Let X be an arithmetic variety. Because X is quasi-projective and XF is smooth,
X(C) = ⊕σ∈∑X ⊗σ C = X ⊗A C

∑
is a quasi-projective complex manifold. Let F∞ :

X(C) → X(C) be the complex conjugation induced from F∞ : C
∑
→ C

∑
. We denote

Dp,p(XR) ⊆ Dp,p(X(C)) (resp. Ap,p(XR) ⊆ Ap,p(X(C))) the sub-spaces of real currents
(resp. forms) T such that F ∗∞T = (−1)pT . We define

D̃p,p(XR) = Dp,p(XR)/(im∂ + im∂)

(resp.

Ãp,p(XR) = Ap,p(XR)/(im∂ + im∂) ).

Definition 4. Let Z be an algebraic cycle of codimension p on X. A Green current

for Z is a Green current gZ for the associated cycle Z(C) on X(C) such that gZ lies in

Dp−1,p−1(XR).

Remark 1.9. From our discussion of currents on complex manifolds, there always exists

a current associated to a cycle Z.

Definition 5. An arithmetic cycle is a pair (Z, g) where Z is an algebraic cycle on X,

and g is a Green current for Z.

Example 1.10. The pairs (0, ∂u+∂v) where u ∈ Dp−2,p−1(X(C)) and v ∈ Dp−1,p−2(X(C)),

and ∂u+ ∂v ∈ Dp−1,p−1(XR) are arithmetic cycles.

Example 1.11. Let X(p−1) be the set of points of co-dimension p − 1 on X. If x ∈
X(p−1) then Y = {x} is a closed irreducible sub-scheme of X of co-dimension p − 1.

For f ∈ k(x)∗, a rational function on Y different from 0, there is an arithmetic cycle

(div(f), [−log|f |2] δY (C)) where div(f) is the divisor of f (a cycle of co-dimension p on

X) and [−log|f |2] δY (C) ∈ Dp−1,p−1(XR) is a current that maps w to −
∫
Y (C)

(log|f |2)w.

The integral converges by resolution of singularities.
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Definition 6. The p-th arithmetic Chow group ĈH
p
(X) is the group generated by

arithmetic cycles of co-dimension p, modulo the subgroup defined by the cycles we just

defined.

ĈH
p
(X) =

{(Z, g), codim(Z) = p}
{(0, ∂u+ ∂v), (div(f), [−log|f |2] δY (C), f ∈ X(p−1))}

Example 1.12. Let L = (L, h) be an Hermitian line bundle on X, i.e. L is an algebraic

line bundle on X, and h is a C∞ Hermitian metric on the corresponding holomorphic line

bundle LC on X(C) that is invariant by complex conjugation: F ∗∞(h) = h. Choose a ra-

tional section s of X (defined on a dense open set of X). Then the pair (div s, [−log||s||2])

is an arithmetic cycle of co-dimension one. Its class ĉ1(L, ||.||) ∈ ĈH
1
(X) is independent

of the choice of the section s. It is called the first Chern class of L = (L, h). One can

show that any element of ĈH
1
(X) is of this form. If we define P̂ ic(X) to be the group

of isomorphism classes of hermitian line bundles, with the group structure

(L, h).(L, h′) = (L⊗ L′, h⊗ h′)

and ||s⊗ s′|| = ||s||.||s′|| then

Proposition 1.13. The first Chern class ĉ1 induces a group isomorphism

ĉ1 : P̂ ic(X) ∼= ĈH
1
(X)

1.1.5 Fundamental exact sequences

We define
ĈH

•
(X) = ⊕pĈH

p
(X)

Zp,p(XR) = ker(d : Ap,p(XR)→ A2p+1(X(C))) ⊆ Ap,p(XR)

Hp,p(XR) = {c ∈ Hp,p(X(C)) : c real , F ∗∞c = (−1)pc} ⊆ Ãp,p(XR)

Proposition 1.14. We have the following exact sequences of abelian groups:

CHp,p−1(X)
ρ−→ Hp−1,p−1(XR)

a−→ ĈH
p
(X)

ζ,ω−−→ CHp(X)⊕ Zp,p(XR)
cl−→ Hp,p(XR)→ 0

CHp,p−1(X)
ρ−→ Ãp−1,p−1(XR)

a−→ ĈH
p
(X)

ζ−→ CHp(X)→ 0

13



CHp,p−1(X) is a motivic cohomology group, appearing in Quillen’s spectral sequence. If

X is Noetherian,

CHp,p−1(X) ∼=
{fy ∈ ⊕y∈X(p−1)k(y)∗ :

∑
y div(fy) = 0}

{d1({uz}) : ({uz}) ∈ ⊕z∈X(p−2)K2(k(z))}

The term K2(k(z)) is Quillen’s algebraic K2-group. The map d1 : ⊕z∈X(p−2)K2(k(z)) →
⊕y∈X(p−1)k(y)∗ is given by the tame symbol.

The morphisms in the theorem are defined as follows:

• An element of CHp,p−1(X) is represented by (fy)y, (fy ∈ k(y)∗, y ∈ X(p−1)) such
that

∑
y div(fy) = 0. The current

∑
y−[log |fy|2] ∈ Dp−1,p−1(XR) satisfies

ddc(
∑
y

−[log |fy|2]) = −δ∑
y div(y) = 0

hence defines an element in Hp−1,p−1(XR), and also in Ãp−1,p−1(XR), which we
denote ρ((fy)y).

• Let cl(η) denote the class of η ∈ Ãp−1,p−1(XR). We define

a : Ãp−1,p−1(XR)→ ĈH
p
(X)

cl(η)→ [(0, [η])]

•
ζ : ĈH

p
(X)→ CHp(X)

[(Z, gZ)]→ [Z]

•
ω : ĈH

p
(X)→ kerd ∩ kerdc(⊆ Zp,p(XR))

[(Z, gZ)]→ wZ

where ddcgZ + δZ = [wZ ].

• The map cl: CHp(X)⊕ Zp,p(XR)→ Hp,p(XR) is given by

cl([Z], w) = cl(Z)− cl(w)

where cl(Z) is the class of Z in Hp,p(XR) and cl(w) is the image of w via the
projection Zp,p(XR)→ Hp,p(XR) sending a closed form to its cohomology class.
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Remark 1.15. By definition,

a(η)x = a(η.w(x))

for any x ∈ ĈH
q
(X) and η ∈ Ãp−1,p−1(XR).

Remark 1.16. In the exact sequence

CHp,p−1(X)
ρ−→ Ãp−1,p−1(XR)

a−→ ĈH
p
(X)

ζ−→ CHp(X)→ 0

the map ρ is the composition of the following:

CHp,p−1(X)
cyc−→ H2p−1

D (XR,R(p))
forgetful−−−−−→ H2p−1

D,an (XR,R(p)) ↪→ Ãp−1,p−1(XR)

where cyc is the cycle class map and forgetful is the forgetful map from real Deligne

Beilinson cohomology to real analytic Deligne cohomology. For the definition of real

Deligne Beilinson cohomology and analytic Deligne cohomology, see [19, 11].

Example 1.17. Consider the exact sequence

CHp,p−1(X)
ρ−→ Ãp−1,p−1(XR)

a−→ ĈH
p
(X)

ζ−→ CHp(X)→ 0

When p = 1, CH0,1(X) = O(X)∗ and Ã0,0(XR) = A0,0(XR) = C∞(X(C),R)F∞ , the

space of real C∞ functions invariant under complex conjugation. The sequence becomes

O(X)∗
(− log | |2σ)σ∈

∑
−−−−−−−−−→ C∞(X(C),R)F∞

a−→ ĈH
1
(X)

ζ−→ CH1(X)→ 0

Moreover, if X = Spec(A) and A = OF , where F is a number field, the sequence becomes

1→ µ(F )→ A∗
(− log | |2σ)σ∈

∑
−−−−−−−−−→ (⊕σ∈∑R)

a−→ ĈH
1
(X)

ζ−→ Cl(OF )→ 0

where µ(F ) is the group of roots of unity in F .

1.1.6 Functoriality and multiplicative structures

Let A = (A,
∑
, F∞) be an arithmetic ring, and F the fraction field of A.

Theorem 1.18. 1) Let f : X → Y be a morphism of arithmetic varieties over A , and

suppose that f induces a smooth map XF → YF between generic fibres of X and Y , and

that f is flat. Then it determines a pull-back morphism of abelian groups

f ∗ : ĈH
∗
(Y )→ ĈH

∗
(X)
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2) Given two flat maps f : X → Y and g : Y → Z inducing smooth maps between

generic fibers, then f ∗g∗ = (gf)∗.

3) The pull-back morphism is compatible with CHp,p−1, CHp, ..., and with the fundamen-

tal exact sequences.

We give a construction of the map f ∗: If Z =
∑
ni[Zi] ∈ Zp(Y ), then f ∗[Z] =∑

ni[f
−1Zi] is a co-dimension p cycle on X. Since f : XF → YF is smooth, fC : XC → YC

is a submersion. For any current T ∈ Dp,q(YR), we can define f ∗CT (φ) = T (fC,∗φ), where
φ is a compactly supported form on XC. The map fC,∗ : Ap,qc (XC) → Ap−d,q−dc (YC) is
integration over the fibre.

Proposition 1.19. Suppose X and Y are equidimensional.

1) If f : X → Y is a proper morphism, of relative dimension d = dim(X) − dim(Y ),

such that f induces a submersion fC : X(C)→ Y (C), then it determines a push-forward

morphism of abelian groups f∗ : ĈH
∗
(X)→ ĈH

∗−d
(Y ).

2) Given two maps f : X → Y and g : Y → Z, then g∗f∗ = (gf)∗.

3) The push-forward morphism is compatible with a, ζ, ω.

4) The projection formula holds:

f∗(x.f
∗(y)) = f∗(x).y

We construct the map f∗ by: f∗((Z, gZ)) = (f∗(Z), f∗(gZ)), where f∗(gZ)(w) =
gZ(f ∗(w)). To define f∗(Z), by linearity, we can assume that Z is an irreducible subset
of X. Let f(Z) be its image. If f(Z) has the same dimension as Z, define f∗(Z) = n.Z,
where n is the degree of the extension of fields k(Z) over k(f(Z)). If f(Z) has a dimension
less than dim(Z), define f∗(Z) = 0.

Proposition 1.20. There exists an associative commutative graded bilinear pairing

ĈH
p
(X)× ĈH

q
(X)→ ĈH

p+q
(X)⊗Z Q

that is compatible with ζ and the multiplicative structure on CH•(X)Q defined by in-

tersection of classes of algebraic cycles, and compatible with ω and multiplication of

differential forms. It is also compatible with inverse image, i.e. f ∗(xy) = f ∗(x)f ∗(y).

The difficulty when defining the product of arithmetic cycles is that there is no-
known version of Chow’s moving lemma for varieties over Z. To define the product of
two algebraic cycles, Gillet and Soulé used an isomorphism

CHp(X)Q ∼= K0(X)(p)
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where K0(X)(p) ⊆ K0(X) is a subspace where each Adams operation ψk, k ≥ 1 acts
by multiplication by kp. The pairing between K0(X)(p) and K0(X)(q) is given by tensor
product ofOX- modules. Another difficulty is to define a product of currents associated to
an intersection of two algebraic cycles. This can be done using Green forms of logarithmic
type as mentioned before.

1.2 Arithmetic characteristic classes for Hermitian

vector bundles

The main references for this sections are [14, 15].

1.2.1 Secondary Bott Chern classes

Let X be a complex manifold and E = (E, h) a holomorphic vector bundle of rank
n on X, endowed with a hermitian metric h. For any symmetric formal series φ ∈
Q[[T1, T2, ..., Tn]] and k ≥ 0, let φ(k) be the homogeneous component of φ of degree k. We
identify φ(k)with φ(k) : Mn(C)→ C, the unique polynomial map which is invariant under
conjugation by GLn(C), and such that its value on a diagonal matrix diag(λ1, ..., λn),
λi ∈ C is equal to φ(k)(λ1, ..., λn). By Chern-Weil theory, we can associate to φ and E
a sum of d and dc closed forms φ(E) = φ(−K/(2πi)) in ⊕p≥0A

p,p(X), where K is the
curvature of a (Chern) connection on E. We recall that a curvature is a 2-form with
value in End(E) and we can identify End(E) with Mn(C) locally, and use φ to evaluate
K. The evaluation makes sense because φ is invariant by conjugation. The form φ(E)
satisfies:

• The de Rham cohomology class of φ(E) is independent of the metric h.

• f ∗φ(E) = φ(f ∗E) for every holomorphic map f : Y → X.

• φ(E ⊕ F ) = φ(E) + φ(F ).

The Chern and Todd classes are defined using the series

ch(T1, T2, .., Tn) =
n∑
i=1

exp(Ti)

Td(T1, T2, ..., Tn) =
n∏
i=1

(Ti/(1− exp(−Ti)))

The cohomology class of φ(E) is independent of the choice of a hermitian metric on
E, but not at the level of forms. This idea is made precisely by the existence of secondary
characteristic classes.
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Theorem 1.21. Let φ ∈ Q[[T1, T2, ..., Tn]] be a symmetric formal series, and E a short

exact sequence of Hermitian vector bundles over a complex manifold X:

E : 0→ S
i−→ E

p−→ Q→ 0

with rank E = n. Then there is a unique way to attach to E a class of forms φ̃(E) ∈
Ã(X) = ⊕p≥0A

p,p(X)/(im∂ + im∂) such that:

i) ddcφ̃(E) = φ(S ⊕Q)− φ(E).

ii) φ̃(E) commutes with pull-back: for all morphisms f : Y → X of complex manifolds,

φ̃(f ∗(E)) = f ∗(φ̃(E))

iii) If E is of the form

0→ S
i−→ S ⊕Q p−→ Q→ 0

where i(x) = x⊕ 0 and p(x⊕ y) = y then φ̃(E) = 0.

Remark 1.22. Because ddc(∂ + ∂) = 0, it makes sense to define secondary characteristic

classes in ⊕p≥0A
p,p(X)/(im∂ + im∂). We also remark that the secondary characteristic

classes can be defined for any long exact sequence of finite terms.

Definition 7. The secondary classes associated to the Chern character’s series is called

the secondary Bott-Chern classes.

Proposition 1.23. The Bott-Chern secondary classes satisfy

• c̃h(E1 ⊕ E2) ≡ c̃h(E1) + c̃h(E2)

• c̃h(E1 ⊗ E2) ≡ c̃h(E1).c̃h(E2)
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• If we have a symmetry:

0 0 0

0 E ′1 E1 E ′′1 0

0 E ′2 E2 E ′′2 0

0 E ′3 E3 E ′′3 0

0 0 0

where all rows Ei and all columns Fj are exact (i, j = 1, 2, 3), then

3∑
i=1

(−1)ic̃h(Ei) ≡
3∑
j=1

(−1)j c̃h(Fj)

1.2.2 Arithmetic characteristic classes

Let X be an arithmetic variety over an arithmetic ring (A,
∑
, F∞).

Definition 8. An hermitian vector bundle E = (E, h) on X is an algebraic vector bundle

E on X such that the induced holomorphic vector bundle EC on X(C) has an hermitian

metric h invariant under complex conjugation, i.e. F ∗∞(h) = h.

Theorem 1.24. For all Hermitian vector bundle E of rank n over an arithmetic variety

X, and for all symmetric series φ ∈ Q[[T1, T2, ..., Tn]], we can associate a characteristic

class φ̂(E) ∈ ĈH
•
(X)Q satisfies the following conditions:

1) Functoriality. If f : Y → X is a morphism of arithmetic varieties, and E is a

Hermitian vector bundle over X then

f ∗(φ̂(E)) = φ̂(f ∗(E))

2) Normalization. If E = L1⊕L2⊕ ....⊕Ln is the orthogonal direct sum of Hermitian

line bundles then

φ̂(E) = φ̂(ĉ1(L1), ĉ1(L2), ..., ĉ1(Ln))
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3) Twist by a line bundle. Let φi ∈ Q[[T1, T2, ..., Tn]] satisfy

φ(T1 + T, ...Tn + T ) =
∑
i≥0

φi(T1, ..., Tn)T i

If E (resp. L) is a Hermitian vector bundle (resp. line bundle), then

φ̂(E ⊕ L) =
∑
i

φ̂i(E)ĉ1(L)i

4) Compatibility with characteristic forms. For all Hermitian vector bundles E

over X,

ω(φ̂(E)) = φ(EC) ∈ ⊕p≥0A
p,p(X)

ζ(φ̂(E)) = φ(E) ∈ CH•(X)Q

5) Compatible with short exact sequences. For all short exact sequence

E : 0→ S → E → Q→ 0

of Hermitian vector bundles on X,

φ̂(S ⊕Q)− φ̂(E) = a(φ̃(E))

Moreover, properties 1),2),3),4) characterize this construction.

Theorem 1.25. Let E and F be Hermitian vector bundles over an arithmetic variety

X. Then

ĉ(E ⊕ F ) = ĉ(E)ĉ(F ), ĉh(E ⊕ F ) = ĉh(E) + ĉh(F ),

ĉh(E ⊗ F ) = ĉh(E)ĉh(F ), T̂ d(E ⊕ F ) = T̂ d(E).T̂ d(F ),

ĉh(E)(1) = ĉ1(E) in ĈH
1
(X)Q

For p ≥ rank(E), ĉp(E) = 0

1.3 Arthmetic Riemann-Roch theorem in higher de-

grees

The main references for this section are [21, 5, 12].
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1.3.1 Arithmetic K-groups

Let X be an arithmetic variety over an arithmetic ring (A,
∑
, F∞).

Definition 9. The arithmetic Grothendieck group K̂0(X) associated to X is the abelian

group generated by Ã(XR) = ⊕p≥0Ã
p,p(XR) and the isometry classes of hermitian vector

bundles on X, with the relations

c̃h(E) = E ′ − E + E
′′

for every exact sequence E : 0→ E ′ → E → E ′′ → 0.

η = η′ + η′′, if η ∈ Ã(X) is the sum of two elements η′ and η′′.

Theorem 1.26. There is an exact sequence of abelian groups

K1(X)
ρ−→ Ã(XR)

α−→ K̂0(X)
β−→ K0(X)→ 0

where α(η) = [(0, η)] and β([E, η]) = [E] where η ∈ Ã(XR) and E is an hermitian vector

bundle. The group K1(X) is Quillen algebraic K1 group, and H2p−1
D,an (XR,R(p)) is real

Deligne cohomology group.The map ρ : K1(X) → ⊕p≥1H
2p−1
D,an (XR,R(p)) ⊆ Ã(XR) is

(−2)× the Beilinson regulator map.

Lemma 1.27. There is a unique ring homomorphism ĉh : K̂0(X) → ĈH
•
(X)Q, com-

muting with pull-back maps, such that

• The formula ĉh(η) = (0, η) holds, if η ∈ Ã(XR).

• The formula ĉh(L) = exp(ĉ1(L)) holds, if L = (L, hL) is a hermitian line bundle

on X.

• The formula ω(ĉh(E)) = ch(E) holds for any hermitian vector bundle E on X.

1.3.2 Bismut-Köhler nalytic torsion forms

Ray-Singer holomorphic torsion

Let X be a compact complex manifold of dimension n, and w is a Kähler form on X.
Let E = (E, h) be a hermitian vector bundle on X. The form w determines a hermitian
metric g on the holomorphic tangent vector bundle TX and a volume form µ on X,
characterized by

w =
i

2π

n∑
α,β=1

g(
∂

∂zα
,
∂

∂zβ
)dzα ∧ dzβ
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and

µ =
1

n!
wn

Consider the Dolbeault complex

...→ A0,q(X,E)
∂E−→ A0,q+1(X,E)→ ...

where Ap,q(X,E) is the vector space of smooth forms of type (p, q) with coefficients in
E, and ∂E is the Cauchy-Riemann operator. For each q, we can define an L2 metric on
Ap,q(X,E) by the formula

< s1, s2 >L2=

∫
X

< s1(x), s2(x) > µ

where < s1(x), s2(x) > is the point-wise scalar product coming from the metric on E
and the metric on differential forms induced from w. The operator ∂E admits an adjoint
∂
∗
E for this scalar product. For s1 ∈ A0,q(X,E), s2 ∈ A0,q+1(X,E)

< ∂Es1, s2 >L2=< s1, ∂
∗
Es2 >L2

Let ∆q,E = ∂E∂
∗
E + ∂

∗
E∂E be the Laplace operator on A0,q(X,E) and H0,q(X,E) =

Ker∆q,E be the set of harmonic forms. Let λ1 ≤ λ2 ≤ λ3 ≤ .... be the eigenvalues of
∆q,E on the orthogonal complement to H0,q(X,E) indexed in an increasing order and
taken into account multiplicities. They are positive. We can define the Dirichlet series

ζq(s) =
∑
n≥1

λ−sn

For λ > 0, λ−s = 1
Γ(s)

∫∞
0
ts−1e−λtdt, hence

ζq(s) =
1

Γ(s)

∫ ∞
0

ts−1
∑
n≥1

e−λntdt =
1

Γ(s)

∫ ∞
0

ts−1Tr(e−t∆q,E − Pq)dt

where Pq is the projection of A0,q(X,E) to the subspace H0,q(X,E). By studying the
asymptotic behavior of the function θ(t) =

∑
n≥1 e

−λnt when t → 0 and t → +∞ using
heat kernel method ([25], page 98), one can show that when Re(s) > dimCX, ζq(s)
converges absolutely, and has a meromorphic continuation to the whole complex plane
which is holomorphic at 0. The Ray-Singer holomorphic torsion is defined as

TRS(X,w,E) =

dimCX∑
q≥0

(−1)q+1qζ ′q(0)
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Ray-Singer holomorphic torsion for flat line bundles on the torus

Let Γ = Z + Z.τ be a lattice in C, X = C/Γ be a torus, and χ : Γ ∼= π1(W ) → S1 a
non-trivial unitary one dimensional representation of π1(X). We can identity χ with an
element in the Picard variety Pic0(X) of X. If χ is given by χ(mτ + n) = e2πi(mu+nv),
then the corresponding element in Pic0(X) is given by u − τv. Moreover, in this case,
ζ0(s) = ζ1(s), hence

TRS(W,u− τv) = ζ ′(0)

where ζ(s) = ζ0(s) is the zeta function for the Laplacian on the space A0,0(X, u − τv)
of C∞ sections of the flat line bundle associated to χ. Explicitly in terms of u, v, τ , the
eigenvalues of ∆ on A0,0(X, u− τv) are:

λm,n = − 4π2

(Imτ)2
|u+m− τ(v + n)|2

By explicit formula for the heat kernel, or by the Poisson summation formula relating
the theta functions of Γ and its dual lattice, we have:

tr(e−t∆) = θ(t) =
∑
m,n

e−λm,nt =
∑
m,n

Im τ

4πt
e−|mτ+n|2/(4t)e2πi(mu+nv)

This gives the asymptotic expansion tr(e−t∆) ∼ Imτ
4πt

when t → 0, hence the analytic
continuation of the zeta function. For Re(s) large, we can write

ζ(s) =
1

Γ(s)

∫ ∞
0

ts−1tr(e−t∆)dt =
1

Γ(s)

∫ 1

0

ts−1tr(e−t∆)dt+
1

Γ(s)

∫ ∞
1

ts−1tr(e−t∆)dt

=
1

Γ(s)

Imτ

4π(s− 1)
+

Imτ

4πΓ(s)

∑
(m,n)6=(0,0)

e2πi(mu+nv)

∫ 1

0

ts−2e−|mτ+n|2/(4t)dt+
1

Γ(s)

∫ ∞
1

ts−1tr(e−t∆)dt

It defines a meromorphic function in the complex plane, which vanishes at s = 0. When
Re(s) < 0, we can plug in the expression for tr(e−t∆) to the last integral to obtain:

ζ(s) =
Imτ

4πΓ(s)

∑
(m,n)6=(0,0)

e2πi(mu+nv)

∫ ∞
0

ts−2e−|mτ+n|2/(4t)dt

=
y

4π

Γ(1− s)
Γ(s)

∑
(m,n) 6=(0,0)

e2πi(mu+nv)(
4

|mτ + n|2
)1−s

We assume v 6= 0 (mod 1). The case u 6= 0 (mod 1) is similar. Following Siegel [23],
by breaking the sum above over m = 0, n 6= 0 and m 6= 0, we can show that ζ(s) given
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by the last expression converges uniformly for Re(s) < 1/2. Thus, we can evaluate ζ ′(s)
at 0 to get:

ζ ′(0) =
1

π

∑
(m,n)6=(0,0)

e2πi(mu+nv).y

|mτ + n|2

where τ = x+iy. By applying Kronecker’s second limit formula, ζ ′(0) = 1
π
.(−2π) log |g−v,u(τ)| =

−2 log |g−v,u(τ)| = −2 log |gu,−v(τ)|. Thus

TRS(X, u− τv) = −2 log |gu,−v(τ)|

Bismut-Köhler higher analytic torsion form

Let π : M → B be a holomorphic submersion of complex manifolds with compact fibre
Z. Let TM, TB be the holomorphic tangent bundles of M and B. Let TZ = TM/B be
the holomorphic tangent bundle to the fibre Z. Let gTZ be a Hermitian metric on TZ.
Let THM be a vector subbundle of TM such that

TM = THM ⊕ TZ

Definition 10. The triple (π, gTZ , THM) defines a Kähler fibration if there exists a

smooth real (1,1)-form w over M, with the following properties:

• w is closed.

• THR M and TRZ are orthogonal with respect to w.

• The form w induces a Kähler metric on TRZ, i.e. if X, Y ∈ TRZ, then

w(X, Y ) =< X, JTZY >gTZ

where JTZ is the complex structure on the real tangent bundle TRZ.

Assume that we have a (1, 1) form w on M inducing a Kähler fibration.
Let ζ be a holomorphic vector bundle on M . Let hζ be a Hermitian metric on ζ. We
assume that the sheaves Rkπ∗ζ’s are locally free. For example, if Rjπ∗ζ = 0 for j ≥ 1,
then π∗ζ is locally free by the semi-continuity theorem. By Hodge theory, there are
isomorphisms between the fibres of Rjπ∗ζ and the corresponding harmonic forms in the
relative Dolbeault complex Ω•(Z, ζ|Z). The harmonic forms inherit the L2 metric, coming

from gTZ and hζ . Hence the metrics gTZ and hζ determine metrics hR
jπ∗ζ on the vector

bundles Rjπ∗ζ’s. Consider

ch(R•π∗ζ, h
R•π∗ζ) =

∑
j=0

(−1)jch(Rjπ∗ζ, h
Rjπ∗ζ)
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and the secondary Bott-Chern class c̃h(R•π∗ζ, h
R•π∗ζ , h′R

•π∗ζ) which satisfies:

ddcc̃h(R•π∗ζ, h
R•π∗ζ , h′R

•π∗ζ) = ch(R•π∗ζ, h
R•π∗ζ)− ch(R•π∗ζ, h

′R•π∗ζ)

The Bismut-Köhler analytic torsion form T (w, hζ) ∈ ⊕p≥0Ã
p,p(BR) satisfies the fol-

lowing conditions:

• It solves the transgression formula:

ddcT (w, hζ) = ch(R•π∗ζ, h
R•π∗ζ)−

∫
Z

Td(TZ, gTZ)ch(ζ, hζ).

This equation makes precise the Grothendieck-Riemann Roch theorem for submer-
sion at the level of cohomology class.

• Its component in degree 0 coincides with a function on B, which calculates the
Ray-Singer holomorphic torsions along the fibres.

• Modulo ∂ and ∂, T (w, hζ) depends only on the metrics (gTZ , hζ).

• If (w′, h′ζ) is another set of data similar to (w, hζ) then

T (w′, h′ζ)− T (w, hζ) = c̃h(R•π∗ζ, h
R•π∗ζ , h′R

•π∗ζ)−∫
Z

T̃ d(TZ, gTZ , g′TZ)ch(ζ, hζ) + Td(TZ, g′TZ)c̃h(ζ, hζ , h′ζ)

modulo ∂ and ∂. Here Td and ch are the Chern-Weil forms corresponding to the
Todd class and Chern class, and T̃ d and c̃h denote the secondary characteristic
forms. This equation is called the anomaly formula.

The last two conditions make the form T (w, hζ) natural in Arakelov theory. The con-
struction of T (w, hζ) was made in [5] by J.M.Bismut and K. Köhler.

1.3.3 The push-forward map of arithmetic K-theory

Let g : Y → B be a projective, proper, flat morphism of arithmetic varieties, which is
smooth over Q. We shall define a direct image g∗ : K̂(Y ) → K̂(B) which is a group
homomorphism. Since g is projective, any vector bundle E on Y has a finite resolution
by g∗ acyclic vector bundles:

E : 0→ Em → Em−1 → ....→ E0 → E → 0

Therefore, it is enough to define the direct image for an element (E, hE) + η ∈ K̂0(Y )
where E is g∗ acyclic because in the general case, we can define g∗((E, h

E)) as the sum
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of
∑

(−1)ng∗((En, h
En)) and the direct image of the c̃h class of the resolution E.

Let (E, hE) be a hermitian vector bundle on X, where E is g∗ acyclic. The sheaf R0g∗E
is then locally free. The holomorphic bundle R0g∗EC has fibers

R0gC∗(EC)b ∼= H0(Y (C)b, E(C)|Y (C)b)

For b ∈ B(C), H0(Y (C)b, E(C)|Y (C)b) can be endowed with an L2 hermitian metric

< s, t >L2 :=
1

(2π)db

∫
Y (C)b

hE(s, t)
wdbY
db!

where wY is the Kähler form induced from hY and db is the dimension of Y (C)b. It
can be shown that this metric depends on b in a smooth way, thus we have a hermitian
metric on (R0g∗E)C, denoted by g∗h

E, depending on gC, h
E, hY .

We write T (hY , h
E) for the higher analytic torsion form determined by (E, hE), gC and

hY . It is an element of Ã(BR), which satisfies the equality

ddcT (hY , h
E) = ch((R0g∗E, g∗h

E))−
∫
Y (C)/B(C)

Td(TgC).ch(E)

Theorem 1.28. There is a unique group morphism g∗ : K̂0(Y )→ K̂0(B) such that

g∗((E, h
E) + η) = (R0g∗E, g∗h

E)− T (hY , h
E) +

∫
Y (C)/B(C)

Td(TgC)η

1.3.4 Arithmetic Riemann-Roch theorem in higher degrees

In this section, we state the general arithmetic Riemann-Roch theorem proven in [12]. Let
g : Y → B be a projective, proper, flat morphism of arithmetic varieties, which is smooth
over Q. We assume also that g is a local complete intersection morphism (l.c.i). Before
stating the arithmetic Riemann-Roch theorem, we define some characteristic classes.
When g is smooth, Tg is a vector bundle, and Tg and T̂ d(Tg) are well-defined elements

of K̂0(Y ) and ĈH
•
(Y ). When g not necessarily smooth, we can still define T̂ d(Tg) as

an element of ĈH
•
(Y ). Because g is assumed to be projective, it factors into a closed

immersion i and a smooth morphism f : P = P n
B → B. Moreover, since g is l.c.i, i is a

regular closed immersion.

Y P

B

i

g

f

Let N be the normal bundle of the immersion i. On Y (C), there is an exact sequence of
vector bundles:

N : 0→ TgC → i∗TfC → NC → 0
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Endow TfC with some (not necessarily Kähler) hermitian metric extending the metric
on TgC, and endow NC with the resulting quotient metric. We define

T̂ d(Tg) = T̂ d(g, hY ) := T̂ d(i∗Tf).T̂ d
−1

(N) + T̃ d(N)Td(NC)−1 ∈ ĈH
•
(Y )Q

It is shown in [16] that the element T̂ d(Tg) depends only on g and on the restriction of
hY to TgC.

Definition 11. The R- genus is the unique additive characteristic class, defined for a

line bundle L by the formula

R(L) =
∑

m odd ≥1

(2ζ ′(−m) + ζ(−m)(1 +
1

2
+ ...+

1

m
))c1(L)m/m!

where ζ is the Riemann-zeta function.

Theorem 1.29. (Arithmetic Riemann-Roch theorem in higher degrees) Let y ∈ K̂0(Y ).

The following equality holds in ĈH
•
(B)Q

ĉh(g∗(y)) = g∗(T̂ d(Tg).(1− a(R(TgC))).ĉh(y))

In [3, 16], Bismut, Gillet and Soulé proved the equality after projection of both sides

on ĈH
1
(B)Q, relating the first arithmetic Chern class of the determinant of cohomology

line bundle, endowed with the Quillen metric and component (1) of the right hand side.
In a later paper [12], H. Gillet, D. Rössler, and C. Soulé proved the general statement in
higher degrees. They consider the difference term

δ(y, g, hY ) := ĉh(g∗(y))− g∗(T̂ d(Tg)(1−R(TgC))ĉh(y))

Using the anomaly formula for analytic torsion forms, they showed that δ(y, g, hY ) is
independent of metrics hY . Moreover, the term vanishes in the case of projective spaces
Y ∼= PrB. For the general case, they factor g into a composition

Y PrB

B

i

g

f

where f is a natural projection and i is a closed immersion. They consider a resolution

0→ ξm → ξm−1 → ...→ ξ0 → i∗η → 0
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by f -acyclic locally free sheaves ξi on PnB. By the case of projective spaces, they already
know that δ(ξi, f) = 0. The result for δ(η, g) then follows from the equality:

m∑
i=0

(−1)iδ(ξi, f) = δ(η, g)

To prove the last equality, H. Gillet, D. Rössler, and C. Soulé use two difficult results
proved by J.M. Bismut involving closed immersions. The first result, often called arith-
metic Riemann-Roch for closed immersions [4], is an analogue of Grothendieck-Riemann-
Roch theorem for closed immersions. The second result, called Bismut immersion the-
orem [2] studies the term

∑m
i=0(−1)iT (w, hξi) − T (w′, hη) on the base. The two results

will involve singular Bott-Chern currents, a class of currents associated to the situation
0→ ξ• → i∗η → 0 as above.

1.4 Arithmetic Riemann-Roch theorem for Adams

operations

The main reference for this section is [22].

1.4.1 λ rings and Adams operations

A λ ring is a commutative ring, with operations λn, addition and multiplication imitating
the exterior power, direct sum and tensor products of vector spaces. For example, for
vector spaces,

∧2(V ⊕W ) ∼= ∧2(V )⊕ (∧1(V )⊗ ∧1(W ))⊕ ∧2(W )

will be translated to λ2(x+ y) = λ2(x) + λ1(x)λ1(y) + λ2(y) in the ring.

Definition 12. A λ ring is a commutative ring R with operations λk, ∀k ≥ 0, satisfying

• λ0 = 1, λ1(x) = x,∀x ∈ R, λk(1) = 0,∀k > 1.

• λk(x+ y) =
∑k

i=0 λ
i(x).λk−i(y).

• λk(xy) = Pk(λ
1(x), ...., λk(x), λ1(y), ..., λk(y)) for some universal polynomials Pk

with integer coefficients.

• λk(λl(x)) = Pk,l(λ
1(x), ..., λkl(x)) for some universal polynomials Pk,l with integer

coefficients.
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Let λt(x) : R→ 1 + t.R[[t]] be defined as λt(x) = 1 +
∑∞

k=1 λ
k(x)tk, where 1 + t.R[[t]]

is the multiplicative subgroup of the ring of formal power series R[[t]] consisting of power
series with coefficients 1. Put

ψ−t(x) = −tdλt(x)/dt

λt(x)

and
ψt(x) =

∑
k≥1

ψk(x)tk

Definition 13. The operations ψk are called the Adams operations on the λ- ring R.

They are ring endomorphisms of R, and satisfy the identity ψk ◦ ψl = ψkl(k, l ≥ 1).

1.4.2 λ ring structure on K̂0(X)

Let X be an arithmetic variety. We recall Ap,p(XR) is the set of real differential forms
of type (p, p) on X(C) that satisfies F ∗∞w = (−1)pw and we write Zp,p(XR) ⊆ Ap,p(XR)

for the kernel of d = ∂ + ∂. We also define Ã(XR) = ⊕p≥0A
p,p(X)/(Im∂ + Im∂) and

Z(XR) = ⊕p≥0Z
p,p(XR). We recall that the arithmetic Grothendieck group K̂0(X) is

generated by Ã(XR) and the isometry classes of hermitian vector bundles on X, with
the relations:

• For every exact sequence E : 0→ E ′ → E → E ′′ → 0, c̃h(E ) = E
′ − E + E

′′

• If η ∈ Ã(XR) is the sum of two elements η′ and η′′, then η = η′ + η′′ in K̂0(X).

Let Γ(X) = Z(XR)⊕ Ã(XR) be a graded group where the term of degree p is Zp,p(XR)⊕
Ãp−1,p−1(XR). It can be endowed with a structure of a commutative graded R- algebra,
defined by the formula

(w, η) ∗ (w′, η′) = (w ∧ w′, w ∧ η′ + η ∧ w′ + (ddcη) ∧ η′)

There is then a unique λ- ring structure on Γ(X) such that the k-th associated Adams
operation acts by the formula ψk(x) =

∑
i≥0 k

ixi where xi is the component of degree i

of the element x ∈ Γ(x). We can now endow K̂0(X) with the structure of a λ-ring:

Definition 14. Let E+ η and E
′
+ η be two elements of K̂0(X), the product ⊗ is given

by the formula

(E + η)⊗ (E
′
+ η′) = E ⊗ E ′ + [(ch(E), η) ∗ (ch(E

′
), η′)]
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where [.] refers to the projection on the second component of Γ(X). If k ≥ 0, set

λk(E + η) = λk(E) + [λk(ch(E), η)]

where λk(E) is the k− th exterior power of E and λk(ch(E), η) is the image of (ch(E), η)

under the k-th λ-operation of Γ(X). H. Gillet, C. Soulé and Rössler showed that ⊗ and

λk are compatible with the defining relations of K̂0(X), and that it endows it with the

structure of a λ- ring. Its unit is OX , since ch(OX) = 1.

Moreover, if we denote K̂0(X)(p) the subspace of K̂0(X)Q consisting of elements x

such that ψk(x) = kpx for every k ≥ 1, then the Chern character induces isomorphisms

ĉh : K̂0(X)(p) → ĈH
p
(X)Q for all p ≥ 0

1.4.3 Bott cannibalistic classes

Let A be a λ- ring. We denote by Afin its subset of elements of finite λ- dimension (it
means λk(a) = 0 for all k >> 0). The Bott cannibalistic class θk is uniquely determined
by the following properties:

• For every λ- ring A, θk maps Afin to Afin, and the equation θk(a+ b) = θk(a)θk(b)
holds for any a, b ∈ Afin.

• The map θk is functorial with respect to λ- ring morphisms.

• If e is an element of λ-dimension 1, then θk(e) =
∑k−1

i=0 e
i.

If H = ⊕∞i=0Hi is a graded commutative group, we define φk(h) =
∑∞

i=0 k
ihi, where hi

is the component of degree i of h ∈ H. Consider the form k−rk(E)Td−1(E)φk(Td(E)),
where E is a hermitian bundle and Td(E) is viewed as an element of the group Z(XR),
endowed with its natural grading. This form is by construction a universal polynomial in
the Chern forms ci(E), and we denote the associated symmetric polynomials in r = rk(E)
variables by CT k. Explicitly

CT k = kr
r∏
i=1

eTi − 1

Ti.eTi
k.Ti.e

kTi

ek.Ti − 1

Definition 15. Let E : 0 → E ′ → E → E ′′ → 0 be an exact sequence of hermitian

holomorphic bundles on a complex manifold. The Bott-Chern secondary class associated

to E and CT k will be denoted by θ̃k(E ).
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Let g : Y → B be projective and flat morphism of arithmetic varieties which is
smooth over the generic fibre. We also suppose that g is a local complete intersection
(l.c.i). Suppose that Y is endowed with a Kähler metric. Let i : Y → X be a regular
closed immersion into an arithmetic variety X and f : X → B be a smooth map such
that g = f ◦ i. Endow X with a Kähler metric and the normal bundle NY/X with some

hermitian metric. Let NC be the sequence 0→ TgC → TfC → NX(C)/Y (C) → 0, endowed
with the induced metrics on TgC and TfC.

Definition 16. The arithmetic Bott class θk(Tg
∨
)−1 of g is the element θk(N

∨
Y/X)θ̃k(NC)+

θk(N
∨
Y/X)θk(i∗Tf

∨
)−1 in K̂0(Y )⊗Z Z[ 1

k
].

The arithmetic Bott class of g can be shown to not depend on i or on the metrics on
X and N . Moreover, it has an inverse in K̂0(Y )⊗Z Z[ 1

k
]. When g is smooth, it is simply

the inverse of the Bott element of the dual of the relative tangent bundle Tg, endowed
with the induced metric.

1.4.4 Arithmetic Adams-Riemann Roch theorem

Theorem 1.30. Let g : Y → B be a projective and flat morphism of arithmetic varieties

that is smooth over the generic fibre. Assume also that g is local complete intersection.

For each k ≥ 0, let θkA(Tg
∨
)−1 = θk(Tg

∨
)−1.(1 + R(TgC) − kφk(RTgC)). Then for the

map g∗ : K̂0(Y )⊗Z Z[ 1
k
]→ K̂0(B)⊗Z Z[ 1

k
], the equality

ψk(g∗(y)) = g∗(θ
k
A(Tg

∨
)−1ψk(y))

holds in K̂0(B)⊗Z Z[ 1
k
] for all k ≥ 1 and y ∈ K̂0 ⊗Z Z[ 1

k
].
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Chapter 2

Applications to abelian schemes and

Poincaré bundles

Let (R,
∑
, F∞) be an arithmetic ring, and S an arithmetic variety over R. We assume

S is regular. Let π : A → S be an abelian scheme over S of relative dimension g. Let
π∨ : A∨ → S be the dual abelian scheme of A, which represents the functor Schop →
Ab, T → Pic0(AT ) where Pic0(AT ) is the group of isomorphism classes of rigidified line
bundles L on AT such that L|At is algebraically equivalent to zero for any geometric
point t of T . Let P be the Poincaré bundle on A×S A∨, corresponding to the morphism
Id : A∨ → A∨. We write p1, p2 for the projections from A×S A∨ to A and A∨, and ε, ε∨

for the zero sections S → A and S → A∨. We call S0 and S∨0 the images of ε and ε∨.
We equip the holomorphic Poincaré bundle P with the unique metric hP such that

the canonical rigidification of P along the zero section ε × Id : A∨ → A ×S A∨ is an
isometry, and such that the curvature form (the first Chern form) of hP is translation
invariant along the fibres of the map A(C)×S(C)A

∨(C)→ A∨(C). We write P := (P, hP )

for the resulting hermitian line bundle and P
0

for the restriction of P to A×S (A∨ \S∨0 ).

2.1 Existence and uniqueness of a canonical class of

currents

Our goal of this section is to prove theorem 2.3, a characterization of a canonical class
of currents on the complex points of dual abelian schemes A∨(C). This class of currents
plays the role of Siegel functions on the complex torus.

Lemma 2.1. Let p, n ≥ 2. The eigenvalues of R- endomorphisms [n]∗ of the Deligne-
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Beilinson cohomology R-vector space H2p−1
D (A∨(C),R(p)) lie in the set {1, n, n2, ..., n2p−1}.

Proof. We have the exact sequence of R− vector spaces coming from the definition of

the Delign-Beilinson cohomology as the hyper-cohomology of certain complex:

...→ H2p−2(A∨(C),C)→ H2p−1
D (A∨(C),R(p))→ H2p−1(A∨(C),R(p))⊕F pH2p−1(A∨(C),C)→ ...

Hence it is enough to prove that the action of [n]∗ on H2p−1(A∨(C), K) for K = R or

C has eigenvalues lying in the set {1, n, n2, ..., n2p−1}. One can show it by looking at

the action of [n]∗ on differential forms, or to use Leray spectral sequence and a known-

result on abelian varieties that the action of [n]∗ on Rsπ∨(C)∗(K) is by multiplication

by ns.

Lemma 2.2. Let A and B be abelian schemes over S and PA and PB be the Poincaré

bundles of A and B. Let i : A→ B be an isogeny. Then the following formula holds in

ĈH
•
(A)Q

pA2,∗(ĉh(PA)) = i∨∗ p
B
2,∗(ĉh(PB))

Proof. By property of the dual isogeny, there is a Cartesian square

A×S B∨ B ×S B∨ B∨

A× A∨ A∨

i× Id

Id× i∨

pB2

i∨

pA2

such that

(Id× i∨)∗PA ∼= (i× Id)∗PB

Here PA and PB denote the Poincaré bundles of A and B. We compute

i∨,∗pA2,∗(ĉh(PA))

= (pB2 (i× Id))∗(Id× i∨)∗ĉh(PA) (Push-forward commutes with base change)

= pB2,∗(i× Id)∗(i× Id)∗ĉh(PB)

= pB2,∗(ĉh(PB)(i× Id)∗ĉh(OA×SB∨))

= (deg i).pB2,∗(ĉh(PB)) (2.1)

Therefore, we have

i∨∗ i
∨,∗pA2,∗(ĉh(PA))

= (deg i).pA2,∗(ĉh(PA)) (i∨∗ i
∨,∗ = deg i)
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= (deg i).i∨∗ p
B
2,∗(ĉh(PB)) (Use 2.1)

Therefore,

pA2,∗(ĉh(PA)) = i∨∗ p
B
2,∗(ĉh(PB))

Theorem 2.3. There exists a unique class of currents gA ∈ D̃g−1,g−1(A∨R) with the

following three properties:

a) Any element of gA is a Green current for S∨0 (C).

b) The identity (S∨0 , gA) = (−1)gp2,∗(ĉh(P ))(g) holds in ĈH
g
(A∨)Q.

c) The identity gA = [n]∗gA holds for all n ≥ 2.

Proof. Uniqueness Let gA and g0
A be elements of D̃g−1,g−1(A∨R) satisfying a), b), c), and

let KA = g0
A − gA be the error term. We have the fundamental exact sequence

CHg,g−1(A∨)
cycan−−−→ Ãg−1,g−1(A∨R)

a−→ ĈH
g
(A∨)

ζ−→ CHg(A∨)→ 0

where cycan is the composition of the following maps:

CHg,g−1(A∨)
cyc−→ H2g−1

D (A∨R,R(g))
forgetful−−−−−→ H2g−1

D,an (A∨R,R(g))→ Ãg−1,g−1(A∨R)

where the last map is an inclusion. By property b), KA is contained in the kernel of the

map a, hence in

V = image(H2g−1
D (A∨R,R(g))

forgetful−−−−−→ H2g−1
D,an (A∨R,R(g))

Moreover, by c) for any n ≥ 2,

KA = [n]∗KA

By lemma 2.1, the map [n]∗ : V → V is injective, and is an isomorphism because

V is finite dimensional. Moreover, the projection formula [n]∗[n]∗ = n2g is valid in

H2g−1
D,an (A∨R,R(g)), therefore [n]∗ also acts on V . The formula [n]∗[n]∗ = n2g also shows

that the set of eigenvalues of [n]∗ are in {n2g, n2g−1, ..., n}. In particular, [n]∗ has no fixed

point in V . From KA = [n]∗KA, we conclude KA = 0.

Proof of existence Let g′ ∈ D̃g−1,g−1(A∨R) be a class of Green currents for S∨0 . It

always exists by our discussion of Green current associated to an algebraic cycle. From

a basic property of Fourier-Mukai transform for abelian schemes, we have

(−1)gp2,∗(ch(P ))(g) = S∨0 in CHg(A∨)Q
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By the fundamental exact sequence

CHg,g−1(X)
cycan−−−→ Ãg−1,g−1(XR)

a−→ ĈH
g
(X)

ζ−→ CHg(X)→ 0

there exists a class of forms α ∈ Ãg−1,g−1(XR) such that

(a⊗Q)(α) = (S∨0 , g
′)− (−1)gp2,∗(ĉh(P ))(g)

Take g = g′−α then g satisfies a), b). Let N be a fixed integer, and define c := g− [N ]∗g.

Then Lemma 2.2 ([N ] is an isogeny and [N ]∨ = [N ] ) implies that

[N ]∗p2,∗(ĉh(P ))(g) = p2,∗(ĉh(P ))(g)

This implies that c is contained in the vector space V defined above. Consider the linear

equation in V with variable x

x− [N ]∗x = c

We already showed that [N ]∗ : V → V does not have any fixed point. Hence the

above equation has a unique root, which we call c0. Let g0 = g − c0. The element

c0 is in ker(a), hence g0 also satisfies conditions a) and b) of the theorem. Moreover,

g0− [N ]∗g0 = (g−c0)− [N ]∗(g−c0) = (g− [N ]∗g)− (c0− [N ]∗c0) = 0, hence [N ]∗g0 = g0.

We will showm∗g0 = g0 for any integerm ≥ 2. First, g0−[m]∗g0 = (g−c0)−[m]∗(g−c0) =

(g− [m]∗g)− (c0 − [m]∗c0) ∈ V . We have

[N ]∗(g0 − [m]∗g0) = [N ]∗g0 − [m]∗[N ]∗g0 = g0 − [m]∗g0

Therefore g0 − [m]∗g0 is a fixed point of [N ]∗ in V , and it implies g0 = [m]∗g0.

2.2 A Chern class formula of Bloch and Beauville

Lemma 2.4. For k 6= g,

p2,∗(ĉh(P ))(k) = 0

in ĈH
•
(A∨)Q.

Proof. Take any integer n ≥ 2. Then equation (2.1) in Lemma 2.2 for i = [n] gives

[n]∗(p2,∗(ĉh(P ))) = deg([n])p2,∗(ĉh(P )) = n2g.p2,∗(ĉh(P ))
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Moreover, using base change and (Id× [n])∗P = P
⊗n

,

[n]∗(p2,∗(ĉh(P ))) = p2,∗(Id× [n])∗(ĉh(P )) = p2,∗ĉh(P
⊗n

) =
∑
k≥0

nk+gp2,∗(ĉh(P ))(k)

Therefore, comparing equations of [n]∗(p2,∗(ĉh(P ))) as polynomials in n, we get

p2,∗(ĉh(P ))(k) = 0

for all k 6= g.

Let L be a symmetric, rigidified line bundle on A, and is relatively ample with
respect to S. Endow LC with the canonical hermitian metric hL, which is compatible
with the rigidification and whose curvature form is translation-invariant on the fibres of
A(C)→ S(C). Let L = (L, hL) be the resulting hermitian line bundle. Let φL : A→ A∨

be the polarization morphism induced by L.

Proposition 2.5. The equality

p2,∗(ĉh(p∗1L)ĉh(P )) =
1√

deg(φL)
φL,∗ĉh(L

∨
)

holds in ĈH
•
(A∨)Q.

Proof. Denote by p
1

and p
2

the projections from A ×S A to each component, and µ :

A ×S A → A the multiplication map. The line bundle µ∗L ⊗ p∗
1
L∨ ⊗ p∗

2
L∨ on A ×S A

carries a natural rigidification on the zero section A
(Id,ε)−−−→ A ×S A and that the same

line bundle is algebraically equivalent to 0 on each geometric fibre of the morphism

p
2

: A ×S A → A. By the universal property of the Poincaré bundle, there is a unique

morphism φL : A→ A∨, the polarization morphism induced by L, such that there is an

isomorphism of rigidified line bundles

(Id× φL)∗P ∼= µ∗L⊗ p∗
1
L∨ ⊗ p∗

2
L∨

Moreover, if we endow the line bundles on both sides with their natural metrics, this

isomorphism becomes an isometry, because both line bundles carry metrics that are

compatible with the rigidification and the curvature forms of both sides are translation

invariant on the fires of the map p
2
(C). We have

p
2,∗(([n]× Id)∗([n]× Id)∗p∗

1
ĉh(L))
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= n2gp
2,∗(p

∗
1
ĉh(L))

= p
2,∗([n]× Id)∗p∗

1
ĉh(L)) (p

2
= p

2
◦ ([n]× Id))

= p
2,∗(p

∗
1
[n]∗ĉh(L)) (p

1
◦ ([n]× Id) = [n] ◦ p

1
)

= p
2,∗(
∑

l≥1 n
2lp∗

1
ĉh(L)(l)) ( L is symmetric, [n]∗L ∼= L

⊗n2

).

Comparing the equations as polynomial in n, we have

p
2,∗(p

∗
1
ĉh(L)) = p

2,∗(p
∗
1
ĉh(L)(g)) =

√
deg(φL)

Moreover, let α = (µ, p
2
), then

p
2,∗(ĉh(µ∗L)) = p

2,∗(α
∗p∗

1
ĉh(L)) = p

2,∗(p
∗
1
ĉh(L))

The first equality is because µ = p
1
α and the second equality is because α is an isomor-

phism preserving p
2
. Thus, we have

p
2,∗(ĉh(p∗

1
L).(Id× φL)∗ĉh(P ))

=p
2,∗(ĉh(p∗

1
L)ĉh(µ∗L)ĉh(p∗

1
L
∨
)p∗

2
ĉh(L

∨
))

=ĉh(L
∨
)p

2,∗(ĉh(µ∗L)) (Projection formula)

=ĉh(L
∨
)p

2,∗(p
∗
1
ĉh(L))

=
√

deg φL ĉh(L
∨
)

Therefore,√
deg φL φL,∗ ĉh(L

∨
)

=φL,∗p2,∗(ĉh(p∗
1
L).(Id× φL)∗ĉh(P ))

=p2,∗(Id× φL)∗((Id× φL)∗p∗1ĉh(L).(Id× φL)∗ĉh(P )) (p
2
◦ φL = (Id× φL) ◦ p2; p

1
= p1 ◦ (Id× φL))

= deg φL.p2,∗(ĉh(p∗1L)ĉh(P ))

and it gives the proposition.

Theorem 2.6. The equality

(S∨0 , gA) = (−1)gp2,∗(ĉh(P )) =
1

g!
√
deg(φL)

φL,∗(ĉ1(L)g)

holds in ĈH
•
(A∨)Q.
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Proof. We already show that

p2,∗(ĉh(P ))(k) = 0

if k 6= g. We will show that

p2,∗(ĉh(P ))(g) =
(−1)g

g!
√

deg(φL)
.φL,∗(ĉ1(L)g)

For any n ≥ 2, we have

1

g!
√

deg(φL⊗n)
φL⊗n,∗(ĉ1(L

⊗n
)g)

=
1

g!
√

deg(φL) deg([n])
φL,∗[n]∗((nĉ1(L))g)

=
1

g!
√

deg(φL)n2g
φL,∗[n]∗(n

g.ĉ1(L)g)

=
1

g!
√

deg(φL)
φL,∗[n]∗(ĉ1(L)g)

Moreover, for any k ≥ 2

[n]∗ĉ1(L)k = n−2k[n]∗[n]∗ĉ1(L)k = n2g−2kĉ1(L)k

and in particular, for k = g, [n]∗(ĉ1(L)g) = ĉ1(L)g. Therefore, in our proof, we can

replace L by a large power of itself. Since L is relatively ample, we can assume that

π∗π∗L→ L is surjective. Let E = π∗π∗L⊗ L∨ and let

P •0 : ....→ ∧r(E )→ ∧r−1(E )→ ....→ E → OA → 0

be the associated Koszul resolution. Let

P •1 : 0→ P → p∗1E
∨ ⊗ P → ....→ p∗1 ∧r (E ∨)⊗ P → ....

be the complex P ⊗ p∗1(P •0 )∨. All the bundles in the complex P •1 have natural hermitian

metrics, and let ηP 1
be the corresponding Bott-Chern class. The equalities

ηP •1 = ĉh(p∗1 ∧−1 (E
∨
))ĉh(P ) = ĉtop(E )T̂ d

−1
(E )ĉh(P )

hold in ĈH
•
(A ×S A∨)Q, where ∧−1(E

∨
) =

∑
r≥0(−1)r ∧r (E )∨: the first equality is

from property of Gillet and Soulé arithmetic Chern classes, and the second equality is
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from [4]. Since rk(E ) can be assumed to be arbitrarily large (since we can replace L by

some of its tensor power, and rank(π∗L) =
√

deg(φL) ), we can assume that ηP •1 = 0 in

ĈH
•
(A×S A∨)Q. Thus, we have

ĉh(p∗1 ∧−1 (E
∨
))ĉh(P ) = 0

We can compute

p2,∗(ĉh(P )) = p2,∗(ĉh(−p∗1 ∧−1 (E
∨
))ĉh(P ) + ĉh(P ))

= p2,∗(ĉh(−p∗1 ∧−1 (E
∨
) + OA×SA∨)ĉh(P ))

= −
rk(E)∑
r=1

(−1)rp2,∗(p
∗
1ĉh(∧r(π∗π∗(L)∨))ĉh(p∗1L

⊗r
)ĉh(P ))

= −
rk(E)∑
r=1

(−1)rp2,∗[ĉh(p∗1L
⊗r

)ĉh(P )]ĉh(∧r(π∨,∗π∗(L)∨)) (πp1 = π∨p2 & proj. formula)

= −
rk(E)∑
r=1

(−1)rp2,∗[ĉh(p∗1L
⊗r

)ĉh(P )]ĉh(∧r(π∨,∗π∗(L)∨))

= −
rk(E)∑
r=1

(−1)r
1√

deg(φL⊗r)
φL⊗r,∗(ĉh(L

∨,⊗r
))ĉh(∧r(π∨,∗π∗(L)∨))

= −
rk(E)∑
r=1

(−1)r
1√

deg(φL).r2g
φL,∗[r]∗(ĉh(L

∨,⊗r
))ĉh(∧r(π∨,∗π∗(L)∨))

= −
rk(E)∑
r=1

(−1)r
1√

deg(φL).r2g
φL,∗(

∑
s≥0

r2g−2sĉh(L
∨,⊗r

)(s))ĉh(∧r(π∨,∗π∗(L)∨))

= −
rk(E)∑
r=1

(−1)r
1√

deg(φL).r2g
φL,∗(

∑
s≥0

r2g−2s.rsĉh(L
∨
)(s)φ∗Lĉh(∧r(π∨,∗π∗(L)∨)))

= −
rk(E)∑
r=1

(−1)r
1√

deg(φL).r2g
φL,∗(

∑
s≥0

r2g−2s.rsĉh(L
∨
)(s)ĉh(∧r(π∗π∗(L)∨)))

= − 1√
deg(φL)

φL,∗[

rk(E)∑
r=1

∑
s≥0

(−1)rrg−sĉh(L
∨
)(s)ĉh(∧r(π∗π∗(L)∨))]

The expression [n]∗ĉ1(L)k = n2g−2kĉ1(L)k implies that if we calculate [n]∗ of the right

hand side of the above, we will get a polynomial in n. In particular, [n]∗ acts as multi-

39



plication by n2g−2s on ĉh(L
∨
)(s) and

[n]∗ĉh(∧r(π∗π∗(L)∨)) = ĉh(∧r(π∗π∗[n]∗(L)∨)) = ĉh(∧r(π∗π∗(L
⊗n2

)∨)) = n2g ĉh(∧r(π∗π∗(L)∨))

Moreover,

[n]∗p2,∗(ĉh(P )) = p2,∗((Id× [n])∗ĉh(P ))

= p2,∗((Id× [n])∗(Id× [n])∗
∑
k≥0

n−kĉh(P )(k))

= p2,∗(
∑
k≥0

n2g−kĉh(P )(k))

=
∑
k≥0

n3g−k(p2,∗ĉh(P ))(k)

is also a polynomial in n. Thus, we can identify the coefficients of the two polynomials.

We obtain the following: if g + k even, then

p2,∗(ĉh(P ))(k) = − 1√
deg(φL)

φL,∗[ĉh(L
∨
)(g+k)/2[

rk(E )∑
r=1

(−1)rrg−(g+k)/2ĉh(∧r(π∗π∗(L))∨)]]

and

p2,∗(ĉh(P ))(k) = 0

if g + k is odd. Moreover, we already show that p2,∗ĉh(P )(k) = 0 for k 6= g. Thus,

p2,∗(ĉh(P ))(g) = − 1√
deg(φL)

φL,∗[ĉh(L
∨
)(g)[

rk(E )∑
r=1

(−1)rĉh(∧r(π∗π∗(L))∨)]]

Furthermore, the left-hand side of the expression is of pure degree g in ĈH
•
(A∨)Q,

therefore

p2,∗(ĉh(P ))(g) = − 1√
deg(φL)

φL,∗[ĉh(L
∨
)(g)[

rk(E )∑
r=1

(−1)r
(
rkE

r

)
]]

The sum
∑rk(E )

r=1 (−1)r
(
rkE
r

)
= −1, and we have the theorem.
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2.3 Arithmetic Riemann-Roch theorem and spectral

interpretation

The goal of this section is to prove Theorem 2.8, which relates the canonical class of
currents to the restriction of the Bismut-Köhler analytic torsion forms along the comple-
ment of the zero section. This is a generalization of the Kronecker’s second limit formula
in higher dimensions.

Applying the arithmetic Riemann-Roch theorem in higher degrees to the restriction

of the Poincaré bundle P
0

= P |A∨\S∨0 and the fibration A×S A∨ \ S∨0 → A∨ \ S∨0 (which
we also call p2), we have

ĉh(p2,∗P
0
) = p2,∗(T̂ d(p2)(1−R(Tp2))ĉh(P

0
))

where p2,∗ on the left hand side is the push-forward map of K- arithmetic groups, and
the right hand side is the push-forward map of arithmetic Chow groups. We have

Rkp2,∗(P
0
) = 0 for all k ≥ 0. Therefore, we have

−T (λ, P
0
) = p2,∗(T̂ d(Tp2)ĉh(P

0
))−

∫
p2

ch(P 0)R(Tp2)Td(Tp2)

in ĈH
•
(A∨)Q. We will take component (g) of both sides. Using Tπ = π∗ε∗Tπ and

projection formula, and Lemma 2.4, we have

[

∫
p2

ch(P 0)R(Tp2)Td(Tp2)](g−1)

= [

∫
p2

ch(P 0)p∗1(R(Tπ)Td(Tπ))](g−1)

= [

∫
p2

ch(P 0)p∗1π
∗ε∗(R(Tπ)Td(Tπ))](g−1)

= [

∫
p2

ch(P 0)p∗2π
∨,∗ε∗(R(Tπ)Td(Tπ))](g−1)

= [π∨,∗ε∗(R(Tπ)Td(Tπ))

∫
p2

ch(P 0)](g−1) = 0
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Similarly,

[p2,∗(T̂ d(Tp2)ĉh(P
0
))](g)

= [p2,∗(p
∗
1T̂ d(Tπ)ĉh(P

0
))](g)

= [p2,∗(p
∗
1π
∗ε∗T̂ d(Tπ)ĉh(P

0
))](g)

= [p2,∗(p
∗
2π
∨,∗ε∗T̂ d(Tπ)ĉh(P

0
))](g)

= [p2,∗(ĉh(P
0
))π∨,∗(ε∗(T̂ d(Tπ)))](g)

= p2,∗(ĉh(P
0
))(g)

Put everything together, we have

p2,∗(ĉh(P
0
))(g) = −T (λ, P

0
)

in ĈH
•
(A∨ \ S∨0 )Q. Using part b) of Theorem 2.3, we have

(0, gA|A∨(C)\S∨0 (C)) = (0, (−1)g+1T (λ, P
0
))

in ĈH
•
(A∨ \ S∨0 )Q. This implies that

g0
A|A∨(C)\S∨0 (C) = (−1)g+1T (λ, P

0
)(g−1)

in Ãg−1,g−1(A∨ \ S∨0 ).

Theorem 2.7. We have T (λ, P
0
) = Td−1(ε∗Ω)γ for some differential form γ of type

(g − 1, g − 1) on A∨ \ S∨0 .

Proof. This is a result from Köhler, see [17].

Theorem 2.8. (Spectral interpretation) The class of differential forms Td(ε∗ΩA/S).T (λ, P
0
)

lies in Ãg−1,g−1((A∨ \ S∨0 )R) and the equality

gA|A∨(C)\S∨0 (C) = (−1)g+1Td(ε∗ΩA/S).T (λ, P
0
)

holds in Ã(g−1,g−1)((A∨ \ S∨0 )R).

Proof. Take component g−1 of Theorem 2.7, we see that γ = (−1)g+1gA|A∨(C)\S∨0 (C).
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2.4 Adams Riemann-Roch theorem and realization

from Quillen’s algebraic K1 groups

Suppose λ is the first Chern form of a relatively ample rigidified line bundle, endowed
with its canonical metric. Let σ ∈ A∨(S) be an element of finite order n, such that
σ∗S∨0 = ∅. Our goal of this section is to prove that

g.n.N2g.σ
∗T (λ, P

0
) ∈ image(reg(K1(S)))

where N2g is 2 × the denominator of B2g with B2g is the 2g−th Bernoulli number, and

reg is the Beilinson regulator map K1(S)→ Ã(SR).

Lemma 2.9. Denote by Ω the sheaf of differential ΩA/S, together with a hermitian metric

coming from λ. We have

Td−1(ε∗Ω
∨ ⊕ ε∗Ω) = 1

Proof. The Bismut-Köhler analytic torsion form of the Poincare bundle along the com-

plement of the zero section does not depend on the arithmetic ring R; therefore, we can

assume R = C. Consider the relative Hodge extension

0→ R0π∗(Ω)→ H1
dR(A/S)→ R1π∗(OA)→ 0 (2.4)

where H1
dR(A/S) = R1π∗(Ω

•
A/S) is the first direct image of the relative de Rham com-

plex. A relative form of GAGA gives an isomorphism of holomorphic vector bundles

H1
dR(A/S)(C) ∼= (R1π(C)∗C) ⊗C OS(C), and using this isomorphism, we can endow

H1
dR(A/S)(C) with the fibrewise Hodge metric. The metric of this vector bundle is lo-

cally constant, hence its curvature vanishes. The formula for the metric on H1
dR(A/S)(C)

shows that in the exact sequence (2.4), the L2 metric on the first term corresponds to

the induced metric, and the metric on the end term is the quotient metric. In this case,

the secondary Todd class of the exact sequence is calculated explicitly in [18], in terms

of Chern classes, hence is ddc- closed. Thus we have

Td(R1π∗(OA, L
2)⊕R0π∗(Ω, L

2)) = Td(H1
dR(A/S), Hodge metric) = 1

By Grothendieck duality, there is an isomorphism of OS-modules φλ : R1π∗OA →
R0π∗(Ω)∨. Explicitly, it was given in terms of Lefschetz intersection form. Up to a

constant factor, φλ induces an isometry between R1π∗(OA, L
2) and R0π∗(Ω, L

2)∨. To
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complete the proof, we note that the volume of the fibres of π(C) is locally constant (the

the assumption on λ), the natural isomorphism of vector bundles R0π∗(Ω, L
2) ∼= ε∗Ω is

an isometry up to a locally constant factor. Hence their Chern forms and Todd classes

are the same.

Lemma 2.10. Let G be an abelian group, written additively. Let c ≥ 1, and let α ∈ G.

Suppose that for all k, l > 0 such that k = l(mod n), we have

(lc − kc).α = 0

in G[ 1
kl

]. Then

order(α) | 2.n.c.
∏

p prime ,(p,n)=1,(p−1)|c

p

Proof. See [19], Lemma 5.5, page 30.

Lemma 2.11. If c is even then

2. denominator [(−1)
c+2
2 Bc/c] = 2.[

∏
p prime ,(p−1)|c

pordp(c)+1]

Proof. See Appendix of [20].

Theorem 2.12. Suppose λ is the first Chern form of a relatively ample rigidified line

bundle, endowed with its canonical metric. Let σ ∈ A∨(S) be an element of finite order

n, such that σ∗S∨0 = ∅. Then

g.n.N2g.σ
∗T (λ, P

0
) ∈ image(reg(K1(S)))

where reg : K1(S)→ Ã(SR) is the Beilinson regulator map.

Proof. Let M be the rigidified hermitian line bundle on A corresponding to σ. By

assumption, there is an isomorphism M
⊗n ∼= OA of rigidified hermitian line bundles.

Let k, l be two positive integers such that k = l (mod n). Let Ω = ΩA be the sheaf

of differentials of A/S, endowed with the metric coming from λ. The Adams-Riemann

Roch theorem says that

ψk(π∗M) = π∗(θ
k(Tπ

∨
)−1(1 +R(TπC)− kφk(RTπC))ψkM)
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where π∗ is the push-forward map of arithmetic K-groups. The right hand side is

π∗[θ
k(Tπ

∨
)−1(1 +R(TπC)− kφk(RTπC))ψkM ]

= π∗[θ
k(Tπ

∨
)−1ψkM + θk(Tπ

∨
)−1ψkM(R(TπC)− kφk(R(TπC)))]

= π∗[θ
k(Tπ

∨
)−1M

⊗k
+ θk(Tπ

∨
)−1M

⊗k
(R(TπC)− kφk(R(TπC)))]

= π∗[θ
k(Tπ

∨
)−1M

⊗k
+ ch(θk(Tπ

∨
)−1M

⊗k
)(R(TπC)− kφk(R(TπC)))]

= R•π∗(θ
k(Tπ

∨
)−1M

⊗k
)− T (λ, θk(Tπ

∨
)−1 ⊗Mk

)+∫
π

Td(Tπ)ch(θk(Tπ
∨
)−1M

⊗k
)(R(TπC)− kφk(R(TπC)))

The first term R•π∗(θ
k(Tπ

∨
)−1M

⊗k
) = θk(ε∗Ω)−1R•π∗(M

⊗k
) by projection formula. The

second term T (λ, θk(Tπ
∨
)−1⊗M⊗k

) = ch(θk(ε∗Ω)−1)T (λ,M
⊗k

). The third term is equal

to

ε∗(Td(Tπ)ch(θk(Tπ)∨)(R(TπC)− kφk(R(TπC))))π∗ch(M
⊗k

)

We know π∗(ch(M
⊗k

)) = σ∗p2,∗ch(P
⊗k

) = k2gσ∗p2,∗ch(P )(g) = n−2gk2gσ∗[n]∗p2,∗ch(P )(g) =

n−2gk2gε∗p2,∗ch(P )(g) = n−2gk2gπ∗ch(OA) = 0. Therefore,

ψk(R•π∗M)− ψk(T (λ,M)) = θk(ε∗Ω)−1R•π∗(M
⊗k

)− ch(θk(ε∗Ω)−1)T (λ,M
⊗k

)

holds in K̂0(S)[ 1
k
] and similarly, the identity

ψl(R•π∗M)− ψl(T (λ,M)) = θl(ε∗Ω)−1R•π∗(M
⊗l

)− ch(θl(ε∗Ω)−1)T (λ,M
⊗k

)

holds in K̂0(S)[1
l
].

Because θk(ε∗Ω) is a unit in K̂0(S)[ 1
k
], multiplying both sides with θk(ε∗Ω), we have

θk(ε∗Ω)ψk(R•π∗M)− ch(θk(ε∗Ω))ψk(T (λ,M)) = R•π∗(M
⊗k

)− T (λ,M
⊗k

)

in K̂0(S)[ 1
k
]. The multiplication rule in K̂0(S) is given in Definition 14. Similarly, we

have

θl(ε∗Ω)ψl(R•π∗M)− ch(θl(ε∗Ω))ψl(T (λ,M)) = R•π∗(M
⊗l

)− T (λ,M
⊗l

)

in K̂0(S)[1
l
]. Because k = l (mod n), we obtain

θk(ε∗Ω)ψk(R•π∗M)− ch(θk(ε∗Ω))ψk(T (λ,M))

= θl(ε∗Ω)ψl(R•π∗M)− ch(θl(ε∗Ω))ψl(T (λ,M))
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in K̂0(S)[ 1
kl

]. Moreover, using

ch(θk(ε∗Ω)) = krk(Ω)Td(ε∗Ω
∨
)φk(Td

−1
(ε∗Ω

∨
))

and Rrπ∗M = 0 for all r ≥ 0,

kgTd(ε∗Ω
∨
)φk(Td

−1
(ε∗Ω

∨
))ψk(T (λ,M)) = lgTd(ε∗Ω

∨
)φl(Td

−1
(ε∗Ω

∨
))ψl(T (λ,M))

in K̂0(S)[ 1
kl

]. It is shown by Köhler that T (λ,M) = Td−1(ε∗Ω)γ, where γ is a real

(g − 1, g − 1) form on S. Moreover,

ψk(η) = k.φk(η)

for η ∈ Ã(SR). Therefore,

kg+1Td(ε∗Ω
∨
)φk(Td

−1
(ε∗Ω

∨
))φk(Td−1(ε∗Ω))φk(γ)

= lg+1Td(ε∗Ω
∨
)φl(Td

−1
(ε∗Ω

∨
))φl(Td−1(ε∗Ω))φl(γ)

Applying Lemma 2.9,

kg+1Td(ε∗Ω
∨
)φk(γ) = lg+1Td(ε∗Ω

∨
)φl(γ)

Moreover, φk(−) acts on a differential form γ of type (g−1, g−1) by sending it to kg−1γ,

hence

k2gTd(Ω
∨
)γ = l2gTd(Ω

∨
)γ

or in other words

(k2g − l2g)T (λ,M) = 0

in K̂0(S)[ 1
kl

]. Using Lemma 2.10 and Lemma 2.11,

2g.n.N2g.T (λ,M) = 0

in K̂0(S). To finish the proof, there is an exact sequence

K1(S)
ρ−→ ⊕p≥0Ã

p,p(SR)
a−→ K̂0(S)→ K0(S)→ 0

where ρ is (−2)× Beilinson regulator map.
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2.5 The case of elliptic schemes

Suppose A is of relative dimension 1, i.e. that A is an elliptic scheme over S. Suppose
also that R = OK and S = Spec(R). Let σ ∈

∑
be an embedding of R into C. There

exists an isomorphism of complex Lie groups, given by the Weirstrass ℘ function and its
derivative, and a normalized map of lattices:

A(C)σ := (A×R,σ C)(C) = C/(Z + Z.τσ)

where τσ ∈ C lies in the upper half plane. The restriction of gA∨ to A(C)σ \ {0} is an

element of Ã0,0(A(C)σ \ {0}) = C∞(A(C) \ {0}), the space of real-valued C∞ functions
on A(C)σ \ {0}.

Proposition 2.13. (a) The restriction of gA∨ to A(C)σ \ {0} is given by the function

φσ(z) = −2 log |e−zη(z)/2sigma(z)∆(τσ)
1
12 |

(b) Endow C with its Haar measure of total measure 1. The function φσ then define

an L1 function on C/(Z + Z.τσ) and the restriction of gA∨ to A(C)σ is the current [φ]

associated with φ.

Proof. (a) By Theorem 2.8, the restriction of gA∨ to A∨(C)σ\{0} is given by T (λ, P
0

A∨)(0),

where PA∨ is the Poincaré bundle on A∨ × A∨∨ ∼= A∨ × A. It is a function on A, with

values are Ray-Singer analytic torsion of Poincaré bundle along the fibre A∨ × A → A,

and is given by the Siegel function as in the discussion of Ray-Singer analytic torsion for

flat line bundles on the torus.

(b) First, there exists a Green form of logarithmic type η for the origin 0. The

function η is a real, C∞ function on A(C)σ \ 0, and is locally L1, hence globally L1 on

A(C)σ because A(C)σ is compact. The currents gA∨ and [η] are currents for the origin,

their difference is given by a C∞ function f on A(C)σ. Because [η+f ]|A(C)σ\0 = [φ]|A(C)σ\0

and η + f and φ are both C∞, φ = (η + f)|A(C)σ\0.

Corollary 2.14. The function φ(z) satisfies the distribution relation∑
w∈C/(Z+Zτσ),nw=z

φσ(w) = φσ(z)

Proof. It follows from distribution relation for gA∨ ,

[n]∗gA∨ = gA∨
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Corollary 2.15. Let z ∈ A(S), whose image is disjoint from the unit section, and such

that nz = 0. Let zσ ∈ C/(Z + Z.τσ) be the element corresponding to z. Then the real

number

exp(24.n.φσ(zσ))

is an algebraic unit.

Proof. We use theorem 2.12. We calculate N2 = 24, and the theorem implies that the

real number exp(24.n.φσ(zσ)) is an algebraic unit.
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[13] Henri Gillet and Christophe Soulé. Arithmetic intersection theory. Publications
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